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Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs)
are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The
performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the
results show that within a very short coupling distance of about 3λ, where λ is the wavelength of signal in
vacuum, the incident signals with different frequencies are separated into different channels with a contrast
ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.
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Photonic crystals (PCs) have attracted much atten-
tion since they were put forward by Yablonovitch
and John[1,2], and many potential applications of
them are proposed in nonlinear optics[3] and all-
optical communication systems[4]. Micro- and nano-
photonic devices based on PC structure, such as optical
waveguide[5,6], beam filter[7], power splitter[8], optical
bistable switching[9], and low threshold laser[10] are all
widely investigated.

Among these various PC structures, PC coupled cav-
ity structures (CCSs) attract special interests[11−14]. A
PC-CCS, developed by A. Yariv’s research group[11],
is formed by a series of high quality cavities. When
the coupling between cavities is weak, tight binding
method can be used to derive the dispersion relation of
CCS[11,14], and a broad continuous eigen frequency band
can be predicted. PC-CCSs with the continuous bands
have been widely used in power splitter[14], arbitrary
bend waveguide[14], broad band optical limiter[15], and
frequency conversion[16]. When the coupling between
cavities are strong, the continuous band would reduce to
discrete eigen states, and the tight binding theory be-
comes invalid[17]. Up to now, the continuous band CCS
has been widely investigated, while the discrete CCS is
seldom discussed[17,18].

In this paper, we investigate the spectrum properties of
discrete mode CCS in a two-dimensional (2D) PC. Based
on the results, we propose a kind of CCS filter and
numerically investigate it using finite-difference time-
domain (FDTD) method[19]. Results show that the ad-
vantages of this kind of filter are very short coupling
length, high contrast ratio and easily tunable operation
frequency band.

Figure 1(a) shows a typical CCS in a 2D PC. The PC is
formed by infinite long dielectric cylinders according to
square lattice, while the cavities are formed by removing
a series of cylinders along the (1,0) direction. The lattice
constant is a, radius of rods r is 0.2a , and the relative
dielectric constant εa is 11.56, so the refractive index na

is 3.4. The background medium is the air with relative

dielectric constant εb = 1.0, namely, the refractive index
nb is 1.0. The number of cavity is N (N = 3 in this
figure). In order to obtain transmission spectra with
proper line widths shown as follows, we introduce an-
other freedom to the structure, i.e., the refractive index
of the two rods to the two ends are changed to nd, as
shown by the two open circles of Fig. 1(a).

Figure 1(b) shows the filter formed by two CCSs with

Fig. 1. (a) Schematic structure of a 2D CCS with N = 3
in square lattice PC embedded in air; (b) three-port filter
formed by two CCSs. The small arrows between the cavities
represent their coupling; (c) dispersion diagram of the PC
structure for TM polarization mode. The band gap is about
(0.29 − 0.41)2πc/a.
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N = 3 and N = 2. Signals with different frequencies are
sent into Port-1, then will be separated from Port-2 and
Port-3 with a high contrast ratio. Figure 1(c) shows the
band gap structure of the PC. A band gap for transverse
mode (TM) mode (with electric vector parallel with the
cylinders) opens in (0.29 − 0.41)2πc/a, and the filtering
discussed in this paper is also limited to the TM polar-
ization.

The coupled mode theory for discrete mode CCS
in one-dimensional (1D) PC has been investigated in
Ref. [17]. However, it should be developed further for
the following two aspects. First, it is a 2D PC in our
case while it is 1D in Ref. [17]. Second, the coupling be-
tween cavities Cn (n = 1, 2, 3, 4, 5) is different, such as
the coupling between C2 and C1, and that between C2

and C4, as shown in Fig. 1(b). In order to extend the
coupled mode theory, we express the the eigen states of
the CCS by the superpositions of that of each cavity,

E(ω, r) =

5
∑

n=1

AnE(ω0, r− Rn), (1)

where Rn is the center coordination of the nth cav-
ity, and E(ω0, r − Rn) is the eigen state of the nth
(n = 1, 2, · · · , 5) cavity. ω0 is the eigen frequency of a sin-
gle cavity, and ω is that of the CCS. The coefficients An

can be arbitrary numbers. E(ω0, r) satisfies the following
normalized condition of

∫

ε0(r)E(ω0, r) ·E(ω, r)dr = 1.
Considering the coupling between Ci and Cj (with

i, j ∈ {1, 2, 3} or i, j ∈ {4, 5}), and also those between
Ci and Ck (with i ∈ {1, 2, 3}, and k ∈ {4, 5}), using a
similar process proposed in Ref. [17], one also can obtain
N eigenmodes for the N -cavity CCS filter of Fig. 1(b).
The eigen frequency of the sth mode is

ωs = ω0

√

Cs − β′

Cs − α′ + Cs∆α
, (2)

(Cs = −
1

2 cos[sπ/(N + 1)]
, s = 1, · · · , N)

where ∆α is the same as that in Ref. [17]. α′ =
(α1 + α2)/2 and β′ = (β1 + β2)/2, where α1(β1) and
α2(β2) are the coefficients when the inter-cavity dis-
tance is 2a, such as C1 and C2 in Fig. 1(b), and 3a, such
as C2 and C4 in Fig. 1(b), respectively.

We obtain the transmission spectra of N = 2 and
N = 3 with different nd using FDTD method, and the
results are shown in Fig. 2. From Figs. 2(a) and (b),
3(2) peak values can be observed clearly for the 3-cavity
(2-cavity) CCS. As shown in Figs. 2(a) and (b), when
nd = 1.0 (dashed line), the confinement of the CCS is
weak, which results in the linewidths of eigenmodes large.
However, for a practical filter, a very small linewidth is
always necessary, and this can be done by tuning the
extra freedom of nd. When we set nd = 2.8 (solid line),
the linewidth of the eigenmode is decreased obviously, as
shown by the solid line.

Figure 2(c) shows the transmission spectra from Port-
2 (solid line) and Port-3 (dashed line) of the CCS
filter. There are five transmission peaks for this 5-cavity
structure, which agree with the coupled mode theory

Fig. 2. (a) Spectrum changes with N and nd. Solid lines are
for nd = 2.8, and dashed lines are for nd = 1.0. N = 2;
(b) the same as (a) but N = 3; (c) transmission spectra of
the filter at Port-2 (solid line) and Port-3 (dashed line) with
nd = 2.8.

presented above, and these frequencies can be di-
vided into 3 groups obviously. The first group is
ω3 = 0.3802(2πc/a). The relative transmission of this
frequency from Port-2 is T2(ω3) ≈ 0.98, while that
from Port-3 is only T3(ω3) ≈ 1.0 × 10−2. The con-
trast ratio is about 20 dB. The second group includes
ω2 = 0.3728(2πc/a) and ω4 = 0.3882(2πc/a). The trans-
mission of this group from Port-3 are T3(ω2, ω4) ≈ 0.65,
while those from Port-2 are T2(ω2, ω4) ≈ 6.0 × 10−3.
The contrast ratio of this group is about 20.4 dB.
The third group includes ω1 = 0.3672(2πc/a) and
ω5 = 0.3946(2πc/a), which transmit from both Port-
2 and Port-3 and cannot be used as a filter. For these
two modes, the localizations in C3 and C5 are at the
same order, which results from the coupling between C1

and C5.
In order to verify the results further, we obtain the

field distributions at steady states for both the first and
second groups using FDTD method, and the results are
shown in Fig. 3. Figure 3(a) shows the field distribu-
tion of ω2 (for ω4, similar results can be obtained and
are not shown here). The energy localized in C5 is very
large, while that in C3 is very weak, therefore it can only
transmit from Port-3. Figure 3(b) shows the field local-
ization of ω3. The localization intensity in C3 is much
larger than that in C5, therefore it transmit from Port-2
mostly.

The above results and analysis show that for a two-
color signal with frequencies of ω2(ω4) and ω3, after a
coupling length of about 8a (about three times of wave-
length of the signals in vacuum), the two signals can
be separated to a ratio about 20 dB. Due to the easily
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Fig. 3. (a) Distribution of electric field |Ez| inside the filter
at steady state for ω2 = 0.3728(2πc/a); (b) the same as (a)
but for ω3 = 0.3802(2πc/a).

tunable eigen frequencies of CCS, coupling strength and
the eigen frequency of the single cavity, a proper struc-
ture for the required frequency band in practice can be
easily found.

In summary, we have investigated the transmission
spectrum of PC coupled cavity structure, and a coupled
cavity filter is proposed. By tuning the confinement
of the structure, we obtained the proper transmission
linewidth. Using a coupling length of 8a, the two op-
eration frequencies are separated to a ratio about 20 dB.
Due to the small volume, high efficiency, and easily tun-
able structure, this kind of filter may have potential ap-
plications in integrated optical circuits.

W. Li is the author to whom the correspondence should
be addressed, her e-mail address is whli2001@163.com.
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